Automatic detection of microcalcifications with multi-fractal spectrum.
نویسندگان
چکیده
For improving the detection of micro-calcifications (MCs), this paper proposes an automatic detection of MC system making use of multi-fractal spectrum in digitized mammograms. The approach of automatic detection system is based on the principle that normal tissues possess certain fractal properties which change along with the presence of MCs. In this system, multi-fractal spectrum is applied to reveal such fractal properties. By quantifying the deviations of multi-fractal spectrums between normal tissues and MCs, the system can identify MCs altering the fractal properties and finally locate the position of MCs. The performance of the proposed system is compared with the leading automatic detection systems in a mammographic image database. Experimental results demonstrate that the proposed system is statistically superior to most of the compared systems and delivers a superior performance.
منابع مشابه
Application of spectrum-volume fractal modeling for detection of mineralized zones
The main goal of this research work was to detect the different Cu mineralized zones in the Sungun porphyry deposit in NW Iran using the Spectrum-Volume (S-V) fractal modeling based on the sub-surface data for this deposit. This operation was carried out on an estimated Cu block model based on a Fast Fourier Transformation (FFT) using the C++ and MATLAB programing. The S-V log-log plot was gene...
متن کاملDetection of Mo geochemical anomaly in depth using a new scenario based on spectrum–area fractal analysis
Detection of deep and hidden mineralization using the surface geochemical data is a challenging subject in the mineral exploration. In this work, a novel scenario based on the spectrum–area fractal analysis (SAFA) and the principal component analysis (PCA) has been applied to distinguish and delineate the blind and deep Mo anomaly in the Dalli Cu–Au porphyry mineralization area. The Dalli miner...
متن کاملReservoir Rock Characterization Using Wavelet Transform and Fractal Dimension
The aim of this study is to characterize and find the location of geological boundaries in different wells across a reservoir. Automatic detection of the geological boundaries can facilitate the matching of the stratigraphic layers in a reservoir and finally can lead to a correct reservoir rock characterization. Nowadays, the well-to-well correlation with the aim of finding the geological l...
متن کاملIdentification of geochemical anomalies associated with Cu mineralization by applying spectrum-area multi-fractal and wavelet neural network methods in Shahr-e-Babak mining area, Kerman, Iran
The Shahr-e-Babak district, as the studied area, is known for its large Cu resources. It is located in the southern side of the Central Iranian volcano–sedimentary complex in SE Iran. Shahr-e-Babak is currently facing a shortage of resources, and therefore, mineral exploration in the deeper and peripheral spaces has become a high priority in this area. This work aims to identify the geochemical...
متن کاملAutomatic Detection and Classification of Microcalcification, Mass, Architectural Distortion and Bilateral Asymmetry in Digital Mammogram
Mammography has been one of the most reliable methods for early detection of breast cancer. There are different lesions which are breast cancer characteristic such as microcalcifications, masses, architectural distortions and bilateral asymmetry. One of the major challenges of analysing digital mammogram is how to extract efficient features from it for accurate cancer classification. In this pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bio-medical materials and engineering
دوره 24 6 شماره
صفحات -
تاریخ انتشار 2014